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Predictive Vehicle Dynamics Control
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Problem complexity

How does the logic change if further actuators

are added?
Engine torque

Active
front/rear _ a8
steering SXB<S. .
/ Active

Active
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Global Chassis Control (GCC) problem

Coordinating vehicle actuators in order to control
multiple dynamics

v’ Front steering

v" Four brakes

v" Engine torque

v’ Active suspensions
v’ Active differential

GCC

v Longitudinal, lateral and vertical
velocty

v" Yaw, roll and pitch angles/rates
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Testing scenario. Autonomous path following

Problem setup: Control objective:

Minimize angle and lateral distance
deviations from reference trajectory

by changing the front wheel steering angle
and the braking at the four wheels

* Double lane change
* Driving on snow/ice, with
different entry speeds

Controlling longitudinal, lateral and yaw dynamics by varying
front steering angle and braking the four wheels

Paolo Falcone (UNIMORE/CHALMERS) Automatic Control Course — Guest Lecture December 11th, 2019



Challenges

e Highly nonlinear MIMO system with uncertainties
— Tires characteristics
* 6 DOF model

— Longitudinal, lateral, vertical, roll, yaw and
pitch dynamics
e Hard constraints
— Rate limitations in the actuators, vehicle
physical limits
e Fast sampling time

— Typically 20-50 ms
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Model Predictive Control
past , future
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Main ingredients
¢ Vehicle model

* Optimization problem

Paolo Falcone (UNIMORE/CHALMERS) Automatic Control Course — Guest Lecture December 11%, 2019 7



Outline

* Vehicle modeling
e Problem formulation
e Experimental results
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Modeling: bicycle and four wheels models

Modeling the vehicle motion in an inertial frame subject to lateral,
longitudinal and yaw dynamics

10 states, 5 inputs
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Tire modeling
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Tire modeling
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Outline

e Introduction and motivations
* Vehicle modeling

e Problem formulation

e Experimental results
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NMPC Control design

. 4 2
Cost function J(&(1).U) = E Mhis =My, |, *+ lu.... Z U=u,..u. .y ,
i=1
Optimization e Non Linear Programming
problem (NLP) problem
Vehicle dynamics  Complex NLP solvers
required

Input constraints

Real time implementation by
v’ limiting the number of

1terations
v’ using short horizons

- =

Real time testing at low speed

Constraints on
input changes

Experimentally tested
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LTV-MPC controller

Approximating the non-linear vehicle model with a Linear Time Varying
(LTV) model A,, B,, C,, D,.*

* Kothare and Morari, 1995, Wan and Kothare, 2003

QBt’Ct’Dt

* Convex optimization
problem. QP solvers

Predicted outputs

Manipulated u(t+k)

e HEasier real-time Inputs

implementation

v

tit+1 t+m t+p
* Longer horizons |

Performance and stability issues* due to linear approximation
* Falcone et al 2008
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Constraints on tire slip angle

Stability achieved through ad hoc state and input constraints

4000

3000

2000

Controller performs
well up to 21 m/s
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The system is still nonlinear
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Stability of the LTV-MPC approach

Consider the discrete time nonlinear system:

() E@+D)=f(E@,ut)) Ee€R" yeR"

We consider the following linear approximation over the horizon N:

s(k+1)= Ak,té:(k)_l_Bk,tu(k)_l_dk,t
k=t,...t+N-1

_9f _9f

kit — s “kr T
) Eo (k) ’
0X -tk ou

Eo (k)
u(r-1)

E(k+1) = f(&(K)u(t-1), & k)=Er)
d., =&(k+1)-A Ek) - B, u(t-1)
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Stability of the L'TV-MPC approach

+EHRMZ‘+H

@) Vy(&n)= min tEHQ&W

Up t 5 Ui N

subject to:

§k+1,t = Atgk,t + Btuk,t + dk,t’ k =

E.EX, k=t.. t+N-1
w, €U, k=t,..,t+N-1

§k+N,t E X
S, =5(1)

3 ult) =u, (&0)
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Stability of the LTV-MPC approach

Theorem. The system (1) with the control law (2)-(3), where X,=0,
1s uniformly asymptotically stable it

- 2 2 * 2 * 2 L=y A * 2

HQ§t+N—1,t 5 + HRut+N—1,t 7 = HQgt,t—l ‘2 + HRut—l,t—l ‘2 - 2 Q(§t+i,t - t+i,t—1) 5 =V
i=1
where:
* k k

Sios = AS, ¥ By, +dy, y = 22 Q(Sm,t -<, t-l) Os,... 2

: ’ 2 ’

k=t,....t+N-=-2 =1

A

g, =8@1)

State and input convex constraints

Liu, 1968. Chen and Shaw. 1982. Mayne et al. 2000
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What does that mean?

2

- * * - *
l(§t+N—l,t’ut+N—1,Z) = l(gt—l,t—l’ut—l,t—l) - F(HQ(EZ‘+Z',I - t+i,t—1) X

Y [At Bt}
|:At1 B, :| .0“‘ Ct D,
C. D, P

r—1 ¢ r+N—2 ¢
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Simulation results at 21 m/s
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Outline

e Introduction and motivations
* Vehicle modeling

e Problem formulation

e Experimental results
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Summary

e Excellent performance
e Limited tuning effort (less than 10 run ~ 1 hr)
* Vehicle stabilized up to 70 Km/h on snowy tracks

e (Coordination of steering and braking

— Braking is delivered on the “same side” of the steering

* Front/rear braking distribution
— Shifting the braking to the non saturated axle

e Countersteering

— Steering in opposite direction of path following to prevent spinning
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Test @ 40 Kph. Steering and braking coordination

¥ [deg]

d'/dt [deg/s]

Time [s]
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Test @ 40 Kph. Steering and braking coordination

Left side braking

| | i i | ]
4 6 8 10 12 14
Time [s]

Right side braking

u

10 12 14

Time [s]
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Summary
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Test @ 40 Kph. Countersteering manoeuvre.

Yaw
instability
induced by

rge
acceleration

Y [deg]

d\/dt [deg/s]
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Test @ 40 Kph. Countersteering manoeuvre

N

5 [deg]

1a ! ! !

o [deg]

o [ded]
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Test @ 70 Kph. Countersteering manoeuvre
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Test @ 70 Kph. Countersteering manoeuvre

15

Time [s]

32
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Test @ 70 Kph. Countersteering manoeuvre
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Experimental results
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Long Heavy Vehicles Combinations
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Long Heavy Vehicles Combinations

Tractor = Semitrailer

Truck  Full Trailer

Truck — Center-axle Trailer

Track — Dolly — Semitrailer

B-Douhle

Tractor ~ Semitrailer - Center-axle
Tratler

Truck = Double Conter-ashe
I'railer

A-Double

I'ruck B Dosble

B-Triple
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Control Objectives

Reducing the yaw rate rearward amplifications v, /r,
and r, /r , by means of the steering angles §, 6,

while bounding the steering angles and rates of steering

Achieving the control objectives by solving a yaw rate tracking
problem where

—> G —>7, . .
21ret " Reference models designed in

Oy —— order to remove resonance peaks
in the yaw rates responses

— G [0
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Reference Models

Bode digram of G, ,, G, and 621_ref

[

Bode digram of G 63 : and 631_ref
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MPC Problem Formulation

Vehicle (linear) model e s
1w ={ 2} d=0,
h 0,
X, =AWV )x, +B(v )u, + E(v, )d, 0, o
yk=ka X = 82 -lec 1’2
: r
Hl vx = Vi y = 63
_é2_ _v):j 01
Y2 |

Cost function

Yaw rate tracking problem translated into a cost function
minimization problem
‘2
2
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MPC Problem Formulation

N
min E(HQ()’Hi - yref,t+i)

2 2
> + ||Sut+i—1||2 + ||RAut+i—1

)

Au, ... Au, n_; ‘1
subject to
X, =AW )x, +Bv )u, + E(v.)d,
w, = u,_, +Au, L Vehicle dynamics
Vi = Cx, J

umin = uk = umax

Actuator limitations
Au_.. <Au, <Au_,

min

The resulting state feedback steering control law is

u (1) =u(t -1+ Au (t,x(2))
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Experimental Results

Testing at Mira Test Center:
Single lane change
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Summary

1. RWA close to one

—  Good reference tracking

2. Smooth steering commands

3. Small articulation angles at the end of the maneuver (Both
dolly and trailer aligned with the truck)

— Please note the sensor offset
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Yaw Rates

Yaw rates, truck tests. SLC Maneuver

8 [ L [ [ [ r r
—— Dolly yaw rate
6 Trailer yaw rate -
— Truck yaw rate
4
)
o
@ 2
(@)
: \
— 0
g \
©
£ 5 1L
: v i
>
. )/
-6 :

s 125 126 127 128 129 130 13 132
Time (sec)
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Dolly Yaw Rate

Yaw rate dolly, truck tests. SLC Maneuver

8 [ [ [ [ r r r
—— Dolly yaw rate

e S e | S S e Ittt Dolly yaw rate reference -

TN

N

o

Yaw rate (Deg/sec)

s 125 126 127 128 129 130 13 132
Time (sec)
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Trailer Yaw Rate

Yaw rate (Deg/sec)

Yaw rate trailer, truck tests. SLC Maneuver

r

r

I

—— Trailer yaw rate

Trailer yaw rate reference |

-t

126
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Summary

1. RWA close to one

—  Good reference tracking

2. Smooth steering commands

3. Small articulation angles at the end of the maneuver (Both
dolly and trailer aligned with the truck)

— Please note the sensor offset
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Steering Angles

Steerings, truck tests. SLC Maneuver

2. [ r T
—— Dolly steering angle
15 i o —— Trailer steering angle 't
1 \_ﬂf\ L — Truck steering angle |
P n
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g 46 (S Y N
5 0. \
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? hy
\ / l
15 \\ /
? ¥
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Summary

1. RWA close to one

—  Good reference tracking

2. Smooth steering commands

3. Small articulation angles at the end of the maneuver (Both
dolly and trailer aligned with the truck)

— Please note the sensor offset
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Dolly Articulation Angle

Dolly articulation angle, truck tests.

SLC Maneuver

— Dolly articulation angle ||
Reference signal

Sensor offset

Articulation angle (Deg)
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Trailer Articulation Angle

Trailer articulation angle, truck tests. SLC ManeuveR
4 [ [ [ [ LAL) r r r [
r 1 ——Trailer articulation angle
R Reference signal

Articulation angle (Deg)

Yoz 125 126 127 128 129 130 131 132
Time (sec)
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Yaw Rate Control of Dolly and Trailer
Model Predictive Control
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Remarks

e Good tracking with minimal design and tuning efforts

e Actuators physical limits included in control design

 Possibility of easily

Include constraints to guarantee RWA<I
Include constraints to limit lateral accelerations
Include constraints to limit off-tracking
Combine steering and braking commands

Guarantee perfect alignment of the combination despite of sensors
offsets
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