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Predictive Vehicle Dynamics Control 
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Problem complexity
How does the logic change if further actuators 

are added?
Engine torque

Active 
front/rear 
steering Active 

suspensions
Active 

differentials
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Global Chassis Control (GCC) problem

GCC
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ü Front steering
ü Four brakes
ü Engine torque
üActive suspensions
üActive differential

ü Longitudinal, lateral  and vertical 
velocty
ü Yaw, roll and pitch angles/rates
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Coordinating vehicle actuators in order to control 

multiple dynamics
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Testing scenario. Autonomous path following
Problem setup:

• Double lane change 
• Driving on snow/ice, with

different entry speeds

Control objective:

Minimize angle and lateral distance
deviations from reference trajectory 
by changing the front wheel steering  angle
and the braking at the four wheels

Controlling longitudinal, lateral and yaw dynamics by varying 
front steering angle and braking the four wheels
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Challenges

• Highly nonlinear MIMO system with uncertainties
– Tires characteristics

• 6 DOF model
– Longitudinal, lateral, vertical, roll, yaw and 

pitch dynamics
• Hard constraints

– Rate limitations in the actuators, vehicle 
physical limits

• Fast sampling time
– Typically 20-50 ms
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Model Predictive Control

Main ingredients
• Vehicle model
• Optimization problem
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Outline

• Introduction and motivations
• Vehicle modeling
• Problem formulation
• Experimental results
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Modeling: bicycle and four wheels models
Modeling the vehicle motion in an inertial frame subject to lateral, 

longitudinal and yaw dynamics

10 states, 5 inputs
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Tire modeling
Static tire forces 
characteristics
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Tire modeling
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Outline

• Introduction and motivations
• Vehicle modeling
• Problem formulation
• Experimental results
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NMPC Control design

Optimization 
problem

Vehicle dynamics

max,min uuu tk ££Input constraints
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• Complex NLP solvers 
required

Real time implementation by
ü limiting the number of 
iterations
ü using short horizons

Real time testing at low speed
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Experimentally tested



Paolo Falcone (UNIMORE/CHALMERS)

Department of Signals and Systems

Automatic Control Course – Guest Lecture December 11th, 2019             14

LTV-MPC controller
Approximating the non-linear vehicle model with a Linear Time Varying 

(LTV) model At, Bt, Ct, Dt.*

tttt DCBA ,,,

•Convex optimization 
problem. QP solvers

•Easier real-time 
implementation

•Longer horizons

Performance and stability issues* due to linear approximation

* Kothare and Morari, 1995, Wan and Kothare, 2003

* Falcone et al 2008
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Constraints on tire slip angle

mina maxa

p

tk

Httk
tktk

+=

££

!              
,, max,min aaa

Controller performs 
well up to 21 m/s

The system is still nonlinear

Stability achieved through ad hoc state and input constraints
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Stability of the LTV-MPC approach
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Consider the discrete time nonlinear system:
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Stability of the LTV-MPC approach
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Stability of the LTV-MPC approach
Theorem. The system (1) with the control law (2)-(3), where Xf=0, 
is uniformly asymptotically stable if

where:
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State and input convex constraints

Liu, 1968. Chen and Shaw. 1982. Mayne et al. 2000
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What does that mean?
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Simulation results at 21 m/s

The controller is able to stabilize the vehicle 
without any ‘ad hoc’ constraint.
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Outline

• Introduction and motivations
• Vehicle modeling
• Problem formulation
• Experimental results
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Testing: Sault St. Marie in Upper Peninsula, MI, USA
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Summary
• Excellent performance 
• Limited tuning effort (less than 10 run ~ 1 hr)
• Vehicle stabilized up to 70 Km/h on snowy tracks

• Coordination of steering and braking
– Braking is delivered on the “same side” of the steering

• Front/rear braking distribution
– Shifting the braking to the non saturated axle

• Countersteering
– Steering in opposite direction of path following to prevent spinning
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Test @ 40 Kph. Steering and braking coordination
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Test @ 40 Kph. Steering and braking coordination

Left side braking Right side braking 
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Test @ 40 Kph. Countersteering manoeuvre.

Yaw 
instability 
induced by 

large 
acceleration
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Test @ 40 Kph. Countersteering manoeuvre
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Test @ 70 Kph. Countersteering manoeuvre
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Test @ 70 Kph. Countersteering manoeuvre
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Test @ 70 Kph. Countersteering manoeuvre
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Experimental results
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Long Heavy Vehicles Combinations
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Long Heavy Vehicles Combinations
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Control Objectives

Reducing the yaw rate rearward amplifications 

and          , by means of the steering angles         

while bounding the steering angles and rates of steering

Achieving the control objectives by solving a yaw rate tracking 
problem where

Reference models designed in 
order to remove resonance peaks 
in the yaw rates responses
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Reference Models
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MPC Problem Formulation
Vehicle (linear) model

€ 

xk+1 = A(vx )xk + B(vx )uk + E(vx )dk
yk = Cxk

€ 

x =

vy
r1
θ1

θ2
˙ θ 1
˙ θ 2

# 

$ 

% 
% 
% 
% 
% 
% 
% 

& 

' 

( 
( 
( 
( 
( 
( 
( 

ú
û

ù
ê
ë

é
=

3

2

d
d

u

€ 

vx =

vx
1

vx
2

vx
3

" 

# 

$ 
$ 
$ 

% 

& 

' 
' 
' 

11d=d

€ 

y =

r2
r3
θ1
θ2

# 

$ 

% 
% 
% 
% 

& 

' 

( 
( 
( 
( 

€ 

J =  Q(yt+ i − yref ,t+ i) 2

2
+ Sut+ i−1 2

2
+ RΔut+ i−1 2

2$ 
% 
& ' 

( 
) 

i=1

N

∑          

Cost function
Yaw rate tracking problem translated into a cost function 
minimization problem
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MPC Problem Formulation
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Vehicle dynamics

Actuator limitations

The resulting state feedback steering control law is
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Experimental Results

Testing at Mira Test Center:
Single lane change
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Summary

1. RWA close to one
– Good reference tracking

2. Smooth steering commands
3. Small articulation angles at the end of the maneuver (Both 

dolly and trailer aligned with  the truck)
– Please note the sensor offset
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Yaw Rates
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Dolly Yaw Rate
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Trailer Yaw Rate
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Summary

1. RWA close to one
– Good reference tracking

2. Smooth steering commands
3. Small articulation angles at the end of the maneuver (Both 

dolly and trailer aligned with  the truck)
– Please note the sensor offset
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Steering Angles
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Summary
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Trailer Articulation Angle
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Remarks

• Good tracking with minimal design and tuning efforts
• Actuators physical limits included in control design
• Possibility of easily

– Include constraints to guarantee RWA<1
– Include constraints to limit lateral accelerations
– Include constraints to limit off-tracking 
– Combine steering and braking commands
– Guarantee perfect alignment of the combination despite of sensors 

offsets
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