Model Predictive Control for Automotive Applications

Paolo Falcone

Dipartimento di Ingegneria "Enzo Ferrari" Universita' di Modena e Reggio Emilia

UNIVERSITÀ DEGLI STUDI DI MODENA E REGGIO EMILIA

Department of Electrical Engineering Chalmers University of Technology Göteborg, Sweden

1

Predictive Vehicle Dynamics Control

Problem complexity

How does the logic change if further actuators are added?

Engine torque

Global Chassis Control (GCC) problem

Coordinating vehicle actuators in order to control multiple dynamics

Automatic Control Course - Guest Lecture

Testing scenario. Autonomous path following

Problem setup:

- Double lane change
- Driving on snow/ice, with different entry speeds

Control objective:

Minimize angle and lateral distance deviations from reference trajectory by changing the *front wheel steering angle* and the *braking at the four wheels*

Controlling longitudinal, lateral and yaw dynamics by varying front steering angle and braking the four wheels

Challenges

- Highly nonlinear MIMO system with uncertainties
 Tires characteristics
- 6 DOF model
 - Longitudinal, lateral, vertical, roll, yaw and pitch dynamics
- Hard constraints
 - Rate limitations in the actuators, vehicle physical limits
- Fast sampling time
 - Typically 20-50 ms

Main ingredients

- Vehicle model
- Optimization problem

Outline

- Introduction and motivations
- Vehicle modeling
- Problem formulation
- Experimental results

Modeling: bicycle and four wheels models

Modeling the vehicle motion in an inertial frame subject to lateral, longitudinal and yaw dynamics

Tire modeling

Static tire forces characteristics

Tire modeling

Outline

- Introduction and motivations
- Vehicle modeling
- Problem formulation
- Experimental results

NMPC Control design

J(

Cost function

$$\xi(t), U = \sum_{i=1}^{H_p} \left\| \eta_{t+i,t} - \eta_{ref_{t+i,t}} \right\|_Q^2 + \left\| u_{t+i,t} \right\|_R^2 \qquad U = u_{t,t} \dots u_{t+H_p},$$

Optimization problem Vehicle dynamics

Input constraints

Constraints on input changes

 $\min_{U} J(\xi_{t}, U)$ subj. to $\xi_{k+1,t} = f(\xi_{k,t}, u_{k,t})$ $\eta_{k,t} = h(\xi_{k,t})$ $u_{\min} \leq u_{k,t} \leq u_{\max}$ $\Delta u_{\min} \leq \Delta u_{k,t} \leq \Delta u_{\max}$ $k = t, \dots, t + H_{p} - 1$

• Non Linear Programming (NLP) problem

• Complex NLP solvers required

Real time implementation by ✓ limiting the number of iterations

✓ using short horizons

Experimentally tested

LTV-MPC controller

Approximating the non-linear vehicle model with a Linear Time Varying (LTV) model A_t , B_t , C_t , D_t .*

* Kothare and Morari, 1995, Wan and Kothare, 2003

• Longer horizons

Performance and *stability* issues* due to linear approximation

* Falcone et al 2008

Constraints on tire slip angle

Stability achieved through *ad hoc* state and input constraints

$$\alpha_{\min_{k,t}} \le \alpha_{k,t} \le \alpha_{\max_{k,t}}$$
$$k = t \dots t + H_p$$

Controller performs well up to 21 m/s

The system is still nonlinear

Stability of the LTV-MPC approach

Consider the discrete time nonlinear system:

(1)
$$\xi(t+1) = f(\xi(t), u(t))$$
 $\xi \in \mathbb{R}^n$ $u \in \mathbb{R}^m$

We consider the following linear approximation over the horizon *N*:

$$\xi(k+1) \cong A_{k,t}\xi(k) + B_{k,t}u(k) + d_{k,t}$$
$$k = t, \dots t + N - 1$$

$$A_{k,t} = \frac{\partial f}{\partial x}\Big|_{\substack{\xi_0(k)\\u(t-1)}}, B_{k,t} = \frac{\partial f}{\partial u}\Big|_{\substack{\xi_0(k)\\u(t-1)}}$$

$$\xi_0(k+1) = f(\xi_0(k), u(t-1)), \quad \xi_0(k) = \xi(t)$$
$$d_{k,t} = \xi_0(k+1) - A_{k,t}\xi_0(k) - B_{k,t}u(t-1)$$

Stability of the LTV-MPC approach

(2)
$$V_{N}^{*}(\xi(t)) = \min_{u_{t,t},\dots,u_{t+N-1,t}} \sum_{i=1}^{N-1} \|Q\xi_{t+i,t}\|_{2}^{2} + \sum_{i=0}^{N-1} \|Ru_{t+i,t}\|_{2}^{2} + \|P\xi_{t+N,t}\|_{2}^{2}$$

subject to :
$$\xi_{k+1,t} = A_{t}\xi_{k,t} + B_{t}u_{k,t} + d_{k,t}, \quad k = t,\dots,t+N-1$$

$$\xi_{k,t} \in X, \quad k = t,\dots,t+N-1$$

$$u_{k,t} \in U, \quad k = t,\dots,t+N-1$$

$$\xi_{k+N,t} \in X_{f}$$

$$\xi_{t,t} = \xi(t)$$

(3)
$$u(t) = u_{t,t}^*(\xi(t))$$

Stability of the LTV-MPC approach

Theorem. The system (1) with the control law (2)-(3), where $X_f=0$, is *uniformly asymptotically stable* if

$$\left\|Q\hat{\xi}_{t+N-1,t}\right\|_{2}^{2} + \left\|Ru_{t+N-1,t}\right\|_{2}^{2} \le \left\|Q\xi_{t,t-1}^{*}\right\|_{2}^{2} + \left\|Ru_{t-1,t-1}^{*}\right\|_{2}^{2} - \sum_{i=1}^{N-2} \left\|Q(\hat{\xi}_{t+i,t} - \xi_{t+i,t-1}^{*})\right\|_{2}^{2} - \gamma$$

where:

$$\hat{\xi}_{k+1,t} = A_t \hat{\xi}_{k,t} + B_t u_{k,t-1}^* + d_{k,t} \qquad \gamma = 2 \sum_{i=1}^{N-2} \left\| Q \left(\hat{\xi}_{t+i,t} - \xi_{t+i,t-1}^* \right) \right\|_2 \left\| Q \xi_{t+i,t-1}^* \right\|_2 \hat{\xi}_{t,t} = \xi(t)$$

State and input convex constraints

Liu, 1968. Chen and Shaw. 1982. Mayne et al. 2000

What does that mean?

Simulation results at 21 m/s

The controller is able to stabilize the vehicle without any 'ad hoc' constraint.

Outline

- Introduction and motivations
- Vehicle modeling
- Problem formulation
- Experimental results

Testing: Sault St. Marie in Upper Peninsula, MI, USA

- Excellent performance
- Limited tuning effort (less than 10 run ~ 1 hr)
- Vehicle stabilized up to 70 Km/h on snowy tracks

- Coordination of steering and braking
 - Braking is delivered on the "same side" of the steering
- Front/rear braking distribution
 - Shifting the braking to the non saturated axle
- Countersteering
 - Steering in opposite direction of path following to prevent spinning

- Excellent performance
- Limited tuning effort (less than 10 run ~ 1 hr)
- Vehicle stabilized up to 70 Km/h on snowy tracks

- Coordination of steering and braking
 - Braking is delivered on the "same side" of the steering
- Front/rear braking distribution
 - Shifting the braking to the non saturated axle
- Countersteering
 - Steering in opposite direction of path following to prevent spinning

- Excellent performance
- Limited tuning effort (less than 10 run ~ 1 hr)
- Vehicle stabilized up to 70 Km/h on snowy tracks

- Coordination of steering and braking
 - Braking is delivered on the "same side" of the steering
- Front/rear braking distribution
 - Shifting the braking to the non saturated axle
- Countersteering
 - Steering in opposite direction of path following to prevent spinning

Test @ 40 Kph. Steering and braking coordination

Test @ 40 Kph. Steering and braking coordination

Left side braking

Right side braking

- Excellent performance
- Limited tuning effort (less than 10 run ~ 1 hr)
- Vehicle stabilized up to 70 Km/h on snowy tracks

- Coordination of steering and braking
 - Braking is delivered on the "same side" of the steering
- Front/rear braking distribution
 - Shifting the braking to the non saturated axle
- Countersteering
 - Steering in opposite direction of path following to prevent spinning

Test @ 40 Kph. Countersteering manoeuvre.

Test @ 40 Kph. Countersteering manoeuvre

Test @ 70 Kph. Countersteering manoeuvre

31

Test @ 70 Kph. Countersteering manoeuvre

32

Test @ 70 Kph. Countersteering manoeuvre

Experimental results

Acknowledgments

- Francesco Borrelli (UC Berkeley)
- Eric Tseng (Ford)
- Davor Hrovat (Ford)

Long Heavy Vehicles Combinations

Long Heavy Vehicles Combinations

Control Objectives

Reducing the yaw rate rearward amplifications r_2 / r_1

and
$$r_3 / r_1$$
, by means of the steering angles δ_2, δ_3

while bounding the steering angles and rates of steering

Achieving the control objectives by solving a *yaw rate tracking problem* where

Reference models designed in order to remove resonance peaks in the yaw rates responses

Reference Models

MPC Problem Formulation

Vehicle (linear) model

$$x_{k+1} = A(v_x)x_k + B(v_x)u_k + E(v_x)d_k$$
$$y_k = Cx_k$$

$$x = \begin{bmatrix} v_y \\ r_1 \\ \theta_1 \\ \theta_2 \\ \dot{\theta}_1 \\ \dot{\theta}_2 \end{bmatrix} \quad v_x = \begin{bmatrix} v_x^1 \\ v_x^2 \\ v_x^3 \\ v_x^3 \end{bmatrix} \quad y = \begin{bmatrix} r_2 \\ r_3 \\ \theta_1 \\ \theta_2 \end{bmatrix}$$

Cost function

Yaw rate tracking problem translated into a cost function minimization problem

$$J = \sum_{i=1}^{N} \left(\left\| Q(y_{t+i} - y_{ref,t+i}) \right\|_{2}^{2} + \left\| Su_{t+i-1} \right\|_{2}^{2} + \left\| R\Delta u_{t+i-1} \right\|_{2}^{2} \right)$$

MPC Problem Formulation

$$\min_{\Delta u_{t},\ldots,\Delta u_{t+N-1}} \sum_{i=1}^{N} \left(\left\| Q(y_{t+i} - y_{ref,t+i}) \right\|_{2}^{2} + \left\| Su_{t+i-1} \right\|_{2}^{2} + \left\| R\Delta u_{t+i-1} \right\|_{2}^{2} \right)$$

subject to

$$\begin{aligned} x_{k+1} &= A(v_x)x_k + B(v_x)u_k + E(v_x)d_k \\ u_k &= u_{k-1} + \Delta u_k \\ y_k &= Cx_k \end{aligned}$$
 Vehicle dynamics

$$\begin{aligned} u_{\min} &\le u_k \le u_{\max} \\ \Delta u_{\min} &\le \Delta u_k \le \Delta u_{\max} \end{aligned} \right\} & \text{Actuator lim} \end{aligned}$$

nitations

The resulting *state feedback* steering control law is

$$u^{*}(t) = u(t-1) + \Delta u^{*}(t, x(t))$$

Experimental Results

Testing at Mira Test Center: Single lane change

- 1. RWA close to one
 - Good reference tracking
- 2. Smooth steering commands
- 3. Small articulation angles at the end of the maneuver (Both dolly and trailer aligned with the truck)
 - Please note the sensor offset

Yaw Rates

Dolly Yaw Rate

Trailer Yaw Rate

- 1. RWA close to one
 - Good reference tracking
- 2. Smooth steering commands
- 3. Small articulation angles at the end of the maneuver (Both dolly and trailer aligned with the truck)
 - Please note the sensor offset

48

Steering Angles

- 1. RWA close to one
 - Good reference tracking
- 2. Smooth steering commands
- 3. Small articulation angles at the end of the maneuver (Both dolly and trailer aligned with the truck)
 - Please note the sensor offset

50

Dolly Articulation Angle

Trailer Articulation Angle

Yaw Rate Control of Dolly and Trailer Model Predictive Control

Remarks

- Good tracking with *minimal design and tuning efforts*
- Actuators physical limits included in control design
- Possibility of easily
 - Include constraints to guarantee RWA<1
 - Include constraints to *limit lateral accelerations*
 - Include constraints to *limit off-tracking*
 - *Combine steering and braking* commands
 - Guarantee *perfect alignment of the combination* despite of sensors offsets

Acknowledgments

- Mathias Lidberg
- Jonas Fredriksson
- Kristoffer Tagesson (Volvo Trucks)
- Leo Laine (Volvo Trucks)
- Stefan Edlund (Volvo Trucks)
- Richard Roebuck (Cambridge)
- Andrew Odhams (Cambridge)